Parameter Estimation of Hidden Diffusion Processes: Particle Filter vs. Modified Baum-Welch Algorithm

نویسندگان

  • A. Benabdallah
  • G. Radons
چکیده

We propose a new method for the estimation of parameters of hidden diffusion processes. Based on parametrization of the transition matrix, the Baum-Welch algorithm is improved. The algorithm is compared to the particle filter in application to the noisy periodic systems. It is shown that the modified Baum-Welch algorithm is capable of estimating the system parameters with better accuracy than particle filters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing the Bidirectional Baum-Welch Algorithm and the Baum-Welch Algorithm on Regular Lattice

A profile hidden Markov model (PHMM) is widely used in assigning protein sequences to protein families. In this model, the hidden states only depend on the previous hidden state and observations are independent given hidden states. In other words, in the PHMM, only the information of the left side of a hidden state is considered. However, it makes sense that considering the information of the b...

متن کامل

Turbo Decoding as an Instance of Expectation Maximization Algorithm

The Baum-Welch algorithm is a technique for the maximum likelihood parameter estimation of probabilistic functions of Markov processes. We apply this technique to nonstationary Markov processes and explore a relationship between the Baum-Welch algorithm and the BCJR algorithm. Furthermore, we apply the Baum-Welch algorithm to two nonstationary Markov processes and obtain the turbo decoding algo...

متن کامل

Estimating rate constants in

The EM algorithm, e.g. as Baum-Welch reestimation, is an important tool for parameter estimation in discrete-time Hidden Markov Models. We present a direct reestimation of rate constants for applications in which the underlying Markov process is continuous in time. Previous estimation of discrete-time transition probabilities is not necessary.

متن کامل

Hidden Markov Models for Information Extraction

As compared to many other techniques used in natural language processing, hidden markov models (HMMs) are an extremely flexible tool and has been successfully applied to a wide variety of stochastic modeling tasks. This paper uses a machine learning approach to examine the effectiveness of HMMs on extracting information of varying levels of structure. A stochastic optimization procedure is used...

متن کامل

Estimating rate constants in hidden Markov models by the EM algorithm

The EM algorithm, e.g., the Baum–Welch re-estimation, is an important tool for parameter estimation in discrete-time hidden Markov models. We present a direct re-estimation of rate constants for applications in which the underlying Markov process is continuous in time. Previous estimation of discrete-time transition probabilities is not necessary.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/cs/0511108  شماره 

صفحات  -

تاریخ انتشار 2005